4.2 Loop Exercise
ā§Ē.⧍ āĻ
āύā§āĻļā§āϞāύ: āϞā§āĻĒ (⧍⧍)
[19] āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āύāĻžāĻŽāϤāĻž āĻĒā§āϰāĻŋāύā§āĻ āĻāϰāĨ¤
[20] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĢā§āϝāĻžāĻā§āĻāϰāĻŋāϝāĻŧāĻžāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [N! = 1 à 2 à 3 à 4 à ......... à N]
[21] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
[22] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
[23] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻŽā§āĻ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āϏāĻāĻā§āϝāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[24] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[25] ā§§ āĻĨā§āĻā§ n āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻšā§āϰ āĻŽāϧā§āϝ⧠āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[25.1] ā§§ āĻĨā§āĻā§ ā§Šā§Ļ āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻšā§āϰ āĻŽāϧā§āϝ⧠āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[26] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻā§ā§ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
[27] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻŦāĻŋāĻā§ā§ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
[28] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[29] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āϞ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[30] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āϏāĻšāĻā§āĻŖāĻ (Co-Prime) āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [if GCD (a, b) == 1, then a and b are Co-Prime]
[31] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[32] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[33] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻĒāĻžāϰāĻĢā§āĻā§āĻ (Perfect) āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[34] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž Perfect, Abundant, or Defective āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[35] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž Amicable āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [sopd(a)==b&&sopd(b)==a]
[36] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžā§ āĻā§āĻāĻŋ āĻ āĻāĻ āϰā§ā§āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[37] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžā§ āĻ āĻāĻ āĻā§āϞā§āĻā§ āĻŦāĻŋāĻĒāϰā§āϤ āĻā§āϰāĻŽā§ āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
[38] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻ āĻāĻ āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
[39] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻ āĻāĻ āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ, āϝāϤāĻā§āώāύ āύāĻž āϝā§āĻāĻĢāϞ āĻāĻ āĻ āĻāĻ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšā§āĨ¤
[40] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻĒā§āϝāĻžāϞāĻŋāĻŖā§āĻĄā§āϰāĻŽ āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ
[19] āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āύāĻžāĻŽāϤāĻž āĻĒā§āϰāĻŋāύā§āĻ āĻāϰāĨ¤
5
5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50
10
10 x 1 = 10
10 x 2 = 20
10 x 3 = 30
10 x 4 = 40
10 x 5 = 50
10 x 6 = 60
10 x 7 = 70
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100
[20] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĢā§āϝāĻžāĻā§āĻāϰāĻŋāϝāĻŧāĻžāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [N! = 1 à 2 à 3 à 4 à ......... à N]
5
5! = 120
10
10! = 3628800
[21] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
28
1 2 4 7 14 28
100
1 2 4 5 10 20 25 50 100
[22] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
28
1 2 4 7 14
100
1 2 4 5 10 20 25 50
[23] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻŽā§āĻ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āϏāĻāĻā§āϝāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
28
6
100
9
[24] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
13
13 is a Prime Number
100
100 is a Not Prime Number
[25] ā§§ āĻĨā§āĻā§ n āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻšā§āϰ āĻŽāϧā§āϝ⧠āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
30
2 3 5 7 11 13 17 19 23 29
100
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
[25.1] ā§§ āĻĨā§āĻā§ ā§Šā§Ļ āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻšā§āϰ āĻŽāϧā§āϝ⧠āĻŽā§āϞāĻŋāĻ (Prime) āϏāĻāĻā§āϝāĻž āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
2 3 5 7 11 13 17 19 23 29
[26] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻā§ā§ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
28
2 4 14 28
100
2 4 10 20 50 100
[27] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻŦāĻŋāĻā§ā§ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞ⧠āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
28
1 7
100
1 5 25
[28] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
56 98
14
20 28
4
[29] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āϞ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
12 15
60
20 25
100
[30] āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āϏāĻšāĻā§āĻŖāĻ (Co-Prime) āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [if GCD (a, b) == 1, then a and b are Co-Prime]
20 23
Co-Prime
20 25
Not Co-Prime
[31] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
28
56
100
217
[32] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻā§āĻĒāĻžāĻĻāĻ (Factor)/āĻā§āĻŖāύā§āϝāĻŧāĻ (Divisor) āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
28
28
100
117
[33] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻĒāĻžāϰāĻĢā§āĻā§āĻ (Perfect) āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
28
28 is a Perfect Number
100
100 is a Not Perfect Number
[34] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž Perfect, Abundant, or Defective āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
28
28 is a Perfect Number
30
30 is a Abundant Number
35
35 is a Defective Number
[35] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž Amicable āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤ [sopd(a)==b&&sopd(b)==a]
220 284
Amicable Number
20 24
Not Amicable Number
[36] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžā§ āĻā§āĻāĻŋ āĻ
āĻāĻ āϰā§ā§āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
100
3
12345
5
[37] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžā§ āĻ
āĻāĻ āĻā§āϞā§āĻā§ āĻŦāĻŋāĻĒāϰā§āϤ āĻā§āϰāĻŽā§ āĻĒā§āϰāĻĻāϰā§āĻļāĻŖ āĻāϰāĨ¤
12345
54321
987654321
123456789
[38] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻ
āĻāĻ āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
12345
15
987654321
45
[39] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻ
āĻāĻ āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ, āϝāϤāĻā§āώāύ āύāĻž āϝā§āĻāĻĢāϞ āĻāĻ āĻ
āĻāĻ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšā§āĨ¤
12345
6
987654321
9
[40] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻĒā§āϝāĻžāϞāĻŋāĻŖā§āĻĄā§āϰāĻŽ āϏāĻāĻā§āϝāĻž āĻāĻŋāύāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
1221
1221 is a Palindrom.
123
123 is Not a Palindrom.
Last updated